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Graphs are ubiquitous
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picture credit (https:/ /ai.googleblog.com/2022/03/robust-graph-neural-networks.html)



Machine leaning on graphs

Main ML tasks in graphs

® Node classification

= Rumor and fake news detection

= Link Prediction

" Friend recommendation

" Graph property prediction
" Molecular property

" Molecular dynamics



Challenges of distribution shifts

/" Distribution shift on graph sizes N\ / Distribution shift on node features

T(ain “ Test(lz_:rge) Train Test(noise) Test(color)
i pan
N : BN J
(a) TRIANGLES (b) MNIST-75SP: Super-pixel Graphs
( Distribution shift on graph structures and node features I
Train Test(molecules from unseen scaffolds)

(c) OGB Molecule Dataset [27]. For validating OOD generalization, this dataset is split based
on the scaffolds (i.e., two-dimensional structural frameworks) of molecules. The testing set
consists of structurally distinct molecules with scaffolds that are not in the training set.

picture credit (https://arxiv.org/pdf/2112.03806.pdf)



This Talk

* Pre-training / self-supervised learning
* How to improve GNN generalization during testing time ?

* Design robust GNNs for semi-supervised node classification
* Handling localized training data
* Handling more node-level distribution shifts

* Distribution shifts on graph-level tasks



Outline

* Pre-training / self-supervised learning
* How to improve GNN generalization during testing time ?

* Design robust GNNss for semi-supervised node classification
* Handling localized training data
* Handling more node-level distribution shifts

* Distribution shifts on graph-level tasks



Main paradigm for pre-training in GNN

* Joint SSL training

min Least (0, A, X, Dr) + Mseis (0, A, X, D)
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Examples of pretext tasks

Pretext Tasks

>

Information Type

Local

Node Property >
Edge Mask >

Global

Pairwise Distance >
Distance to Clusters>

Attribute Mask >

Pairwise Attribute Similarity >




Predictive and contrastive pre-training

Generative / Predictive

Data
I

NereN
R %00~ ——p

Data
&I

Data Io

Data =,

Loss measured in the output space

Examples: Colorization, Auto-Encoders

Contrastive

— A o
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Classification
(similar or not)

Loss measured in the representation space
Examples: TCN, CPC, Deep-InfoMax

= Given: X = {x, x*, x{,..,xy_1}; Similarity function s(-) (e.g., cosine similarity)

= Goal: s(f(x), f(x™)) > s(f(x), f(x7))

= Contrastive/InfoNCE Loss

log

exp (s(f(x),f(x+)))

exp (S(f(X),f(x+))) + Z?’=_11 exp (S (f(x): f(xj—)))_




Different pre-training settings

] . h node graph
subgraph instance discrimination classification classification
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Pre-Training Fine-Tuning

- To pre-train from some graphs
- To fine-tune for unseen tasks on unseen graphs

GPT-GNN
(" attribute edge ) [ node link .
generation generation classification prediction Fecommandstian
2ty 2ty
GPT-GNN o GPT-GNN GPT-GNN GPT-GNN
iy ity

attribute and edge masked
input graph

the same input graph or graphs of the same domain

~

Pre-Training

To pre-train from one graph

Fine-Tuning

To fine-tune for unseen tasks on the same graph or

graphs of the same domain



GNN Pre-training vs. distribution shifts

Input graph

(a) Context Prediction

(b) Attribute Masking

r;. K-hop neighborhood
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Pre-Training Graph Neural Networks for Generic Structural Feature Extraction




Outline

* Pre-training / self-supervised learning
* How to improve GNN generalization during testing time ?

* Transfer learning of graph neural networks with ego-graph information maximization

(Neurips 21°)
* Design robust GNNss for semi-supervised node classification
* Handling localized training data

* Handling more node-level distribution shifts

* Distribution shifts on graph-level tasks


https://proceedings.neurips.cc/paper/2021/hash/0dd6049f5fa537d41753be6d37859430-Abstract.html

A transfer learning perspective on GNNs

unsupervised

% transferring

Graph Neural
Networks

Source Graph Target Graph



Graph Similarity as an indicator

* WL-test use rooted subtree to distinguish different graphs.

}\Q)L\(., Z.’.Sv) Iha:k( )Z , S)

kaak(., Z.’.).S} 'ha.s‘n( ,

/T\ 2WL test iterations Captures structures ‘
e v ood O Multiset
Graph Rooted subtree GNN aggregation /
Can we use rooted subtree (ego-
graph) to measure the similarity
between graphs ?




Ego-graph distribution difference as indicator

P

G1 G2 Gs
ego-graph 220, 023,, o2 0.15
distribution j I 0.05 I 0.05 I ﬂ
feature |
v X
Transferable @ ’ transferable feature, Non-transferable feature,
GNN similar ego-graphs dissimilar ego-graphs

A natural view of graph neural network is a function I over graph(ego-graph) and node features.
Hence, transferability is measured upon domain (feature) discrepancy.



Definition of structural information

Definition 3.1 (K-hop ego-graph). We call a graph g; = {V (g:), E(g;) } a k-hop ego-graph centered
at node v; if it has a k-layer centroid expansion [4] such that the greatest distance between v; and
any other nodes in the ego-graph is k, i.e. Yv; € V(g:), |d(vi,v;)| < k, where d(vi,v;) is the graph
distance between v; and v;.

Definition 3.2 (Structural information). Let G be a topological space of sub-graphs, we view a
graph G as samples of k-hop ego-graphs {g;}"_, drawn i.i.d. from G with probability u, i.e.,
g r~a pw Vi = 1,--- ,n. The structural information of G is then defined to be the set of k-hop
ego-graph of {g;}"_, and their empirical distribution.



Design of transferable learning objective

» Motivation: if self-supervised model approximates the ego-graph
distribution of the source graph. The inference error on target graph &
therefore, captures the structural difference if & is small.

» We further use empirical loss different Al between source and target
graph to evaluate the potential ot such transfer.



Ego-graph Information Maximization (EGI)

* To capture the joint distribution of structural information and node
features, an idea GNN maximize the mutual information between
structural information {g;, x;} and its output W. Such that,

ZUSD) (G W) = Ep [—sp (—Tp v (9, ¥(gs,2:)))] — Ep. 5 [sp (T, (9i, ¥ (g}, )]

* Discriminator D is asked to distinguish the samples from joint
distribution and product of two marginal distributions.



EGI Model Optimization

Postive Ego-graph (g;, x;) Encoder ¥ center m.:de Discriminator D
embedding
hop 1
7. edge message ,----.
L passing / \
Edge-wise
decision

, edge message
passing

Reconstruct the ego-graph, alternatively



Transferability of EGI

Theorem A.2. Let G, = {(9;, ;) }"_, and Gy, = {(gs, i)} ', be two graphs and node features are structure-respecting
with x; = f(Lyg,), i = f(Lyg,, ) for some function f : RIV)IxIV(g:)l 5 Re, Consider GCN W g with k layers and a 1-hop
polynomial filter ¢,the empirical performance difference of Vg with Lgg, satisfies

1=1 ¢/ =1

1 n m _ _ _
L51(Ga) — Lea(Gy)| < O <% > M+ Cae(Li = L) + O L, = L, ))1) W

where M is dependant on ¥, D, node features, and the largest eigenvalue of L, and igz.. C' is a constant dependant

on the encoder, while C' is a constant dependant on the decoder. With a slight abuse of notation, we denoteN)\max({l) =
)\max(ATA)l/Q. Note that, in the main paper, we have C := M + CAnax(Lg, — Ly, ), and Ap(Ga, Gp) := CAmax(Lg, —
Lg.,)

* The above theorem states the empirical risk difference on source and target
graph are bounded by the Laplacian difference on in-degree and out-degree
adjacency matrices.

* Specifically, the EGI bound term Ap (Gg, Gp) describes the transferability of
the EGI objective.



Application of EGI

e Usage of EGI

* Have a series of similar large graph on different task, train EGl embedding on
any of the graph and get transferable embedding easily.

* Usage of EGI gap term Ay (G, Gp)

* point-wise pre-judge: compute the term between source and target graph to
assess the potential of positive transfer ( < 1.0 in practice)

* pair-wise pre-selection: when multiple source graphs are available G, GZ, G
select most suitable source graph G, with the smallest EGl gap Ap



Experiments

* Synthetic Experiment

* Limit the power of rooted subtree by number of hop and still try to find
structural equivalent nodes

* Unsupervised Transfer on node classification

* Train self-supervised encoder on source graph. Obtain node embeddings on
target graph without fine-tuning,

* Few-shot fine-tuning on relation classification

* Jointly train the encoder and task-specific loss



Synthetic experiments

Synthetic task: finding structural equivalent nodes

(a) Forest-fire graph example

(b) Barabasi-albert graph example

transferable features

non-transferable feature

structural difference

Method FF | B-F | é(acc) | F-F | B-F | d(acc.) | Ap(EF) | Ap(B,F)
GIN (untrained) | 0.572 | 0.572 | / | 0358 | 0.358 /
VGAE (GIN) | 0.498 | 0.432 | +0.066 | 0.240 | 0239 | 0.001
DGI (GIN) 0.578 | 0.591 | -0.013 | 0.394 | 0213 | +0.181 | 0.752 0.883
EGI (GIN) 0.710 | 0.616 | +0.094 | 0.376 | 0.346 | +0.03




Real Data Experiments

Task: Unsupervised transferring on role identification

Dataset: Airport (USA, Europe, Brazil), role — level of popularity

Table 2: Results of role identification with direct-transfering on the Airport dataset. The performance reported (%) are the average over
100 runs. The scores marked with ** passed t-test with p < 0.01 over the second best results.

Method Europe (source) USA (target) Brazil (target)
node degree | uniform | node degree | uniform | node degree ‘ uniform
features 52.81 20.59 55.67 20.22 67.11 19.63
GIN (untrained) 55.75 53.88 61.56 58.32 70.04 70.37
GVAE (Kipf & Welling, 2016) 53.90 21.12 55.51 22.39 66.33 17.70
DGI (Velickovic et al., 2019) 57.75 22.13 54.90 21.76 67.93 18.78
MaskGNN (Hu et al., 2019a) 56.37 55.53 60.82 54.64 66.71 74.54
ContextPredGNN (Hu et al., 2019a) 52.69 49.95 50.38 54.75 62.11 70.66
Structural Pre-train (Hu et al., 2019b) 56.00 53.83 62.17 57.49 68.78 72.41
EGI 59.15** 54.98 64.55** 57.40 73.15** 70.00

Common self-supervised algorithms such as DGI and GVAE fails to positive transfer.



Real Data Experiments

Task: Unsupervised transferring + fine-tuning on Link Prediction
Dataset: knowledge graph (YAGO)
Post-fine-tuning: use transferred encoder W

Joint-fine-tuning: jointly optimize the EGI and task objective on target

post-fine-tuning joint-fine-tuning

Method AUROC | MRR | AUROC | MRR

No pre-train 0.6866 | 0.5962 N.A. N.A
GVAE [24] 0.7009 | 0.6009 | 0.6786 0.5676
DGI [45] 0.6885 | 0.5861 | 0.6880 0.5366
Mask-GIN [19] 0.7041 | 0.6242 | 0.6720 0.5603
ContextPred-GIN [19] | 0.6882 | 0.6589 | 0.5293 0.3367
EGI 0.7389** | 0.6695 | 0.7870** | 0.7289**




Model Analysis

* Efficient Computation of term Ap

* Enumerating every single pair of ego-graph between source and target graph can
easily blow up the memory (N by M pairs — N,M is the number of nodes).

* In practice, we can estimate it by uniformly down sample such pairs

Sampling frequency Europe-USA Europe-Brazil

100 pairs 0.872+0.039 0.854:0.042
1000 pairs 0.859+0.012 0.848x0.007
Full 0.869 0.851

* Relation to the depth of rooted subtree (ego-graph)

Europe (source) USA (target) Brazil (target)

Method acc acc, Ap acc, Ap
EGI (k=1) 58.25 60.08, 0.385 60.74, 0.335
EGI (k=2) 59.15 64.55, 0.869 73.15, 0.851

EGI (k=3) 57.63 64.12,0.912 72.22,0.909



Outline

* Pre-training / self-supervised learning
* How to understand GNN generalization during testing time ?

* Design robust GNNss for semi-supervised node classification
* Handling localized training data

* Shift-robust gnns: overcoming the limitations of localized graph training data (Neurips 21°)

* Handling more node-level distribution shifts

* Distribution shifts on graph-level tasks


https://proceedings.neurips.cc/paper/2021/hash/eb55e369affa90f77dd7dc9e2cd33b16-Abstract.html

What is localized training data?

picture credit (https://ai.googleblog.com/2022/03/robust-graph-neural-networks.html)



Localized data 1s covariate shift

* A general graph neural network layer, final representation Z = Hk
H* = o(AH*16%)

* To learn a semi-supervised classifier, cross-entropy loss function 1 is
widely used 1 M
1=1

* Data-shift [1] happens when the training data 1s biased from testing

° Prtrain (Xa Y) * Prtest (X> Y)

* In a neural network, we care about the shift happens in the last hidden activated

layer Z ie Prtram (Z Y) ?l: Prtest <Z Y>

* Covariate shift assumes, Pt,i, (Y|Z) = Pt (Y|Z), such that,
Priain(Z, Y) 7’é Prtest(Z Y) — Pruain(Z) # Priex(2)

[1] Quinonero-Candela, Joaquin, et al., eds. Dataset shift in machine learning. Mit Press, 20009.



Quantity the distribution shift

* Assume two sets of representation vectors are generated by probability
distribution p and q, a valid discrepancy metric measures the distribution

shifts, CM

D [1] tor example,

1
CMD = |b—a|”E( ||2+Z k“Ck p) — ¢k (9)|l2,

[1] Zellinger, Werner, et al. "Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning," ICLR, 2016.



Negative effect of distribution shifts
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Distribution shift (CMD) between training and testing data could be a good indicator of
petformance (F1) !



Two major variants of GINNs
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Standard GNNis: the graph inductive bias A is differentiable
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Linearized GNN
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Feedforward
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Linearized GNNs: the graph inductive bias A is not differentiable




Examples of linearized (shallow) models

(. ) x;
SGC —
:5 4
f Neural
| network
1
hi = fo(x:)
K-step Feature Propagation oD
X « S¥X @ > h; s 2;
. / He Prediction 00 Personalized PageRank oD
SGC [1] APPNP [2], PPRGo [3]

Complexity of neural networks do not grow as number of propagations increase !

[1] W, Felix, et al. "Simplifying graph convolutional networks." ICMI_, 2019.

2] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Giinnemann. "Predict then Propagate: Graph Neural Networks meet
Personalized PageRank." ICLR, 2018.

[3] Bojchevski, Aleksandar, et al. “Scaling graph neural networks with approximate pagerank.” KDD, 2020.



Standard GNN - regularization on Z

® = F(0,A)

* O 55 fully differentiable. We sample an IID data of the same size of
training data and minimize the distribution shift between Z,,,;,, and Zyp

train

1
L= M Z l(yz', Zz) + A d(Ztraina ZIID)-

1 = 1
dCMD(erain, ZIID) = b—a ”E(erdm) - E(ZIID)” + Z |b — a|k ”Ck (Ztmin) — Ck (ZIID)”a
k=2




Linearized GNN - instance re-weighting

® = F,(0,F; (4))

£ = = Bil(ys (o),

* We use importance sampling to mitigate the shift, calculate the instance
weight via kernel mean matching [1],

M
1
mm || Zﬂz ~ Z¢(h;)||2, s.t. B < B < By
i=1

[1] Gretton, Arthur, et al. "Covariate shift by kernel mean matching." Dataset shift in machine learning 3.4 (2009): 5



Shift-Robust training framework

1
LSR-GNN = Mﬁil(yi, ®(z;, A)) + A - d(Zirain, Z1D)-

* We choose APPNP [1] (a linearized model) as a concrete example that
both techniques can be applied

k—1
® Appnp = ((1 —a)fA* + o 2(1 — a)i}ii) F(©,X).
1=0 v
~ o feature encoder

¥

approximated personalized page rank

[1] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Gunnemann. "Predict then Propagate: Graph Neural Networks
meet Personalized PageRank." ICIR, 2018.



Shift-Robust training framework

(e.g., F; = PPR)
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Biased training set creation

* The localized training data in real-world applications is not easy to
control the degree of bias. We propose a scalable biased training data
generation process based on fast Personalized Page Rank computation

1],

Algorithm 1: Biased Training Set Creation PPR-S(+, €, a)

Given a class ¢, label ratio 7, graph size N;
Initialize the biased training set X = { } ;
while len(X)< N - 7 do
Sample node i of class ¢, compute its top-7 entries in 7" (€) via [2];
if 777" (€) has ~ non-zero entries then
| X.add(#!™(€)) ;
end

o -

L 9 o n s W

end

[1] Andersen, Reid, Fan Chung, and Kevin Lang. “Local graph partitioning using pagerank vectors.” FOCS, 2000.



Biased training data example
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Figure 1: A biased sample on Cora dataset for one class, orange indicates the training data, red indicates the
initial seed used in our PPR-S sampler. The PPR-score is presented in figure (c).



Experimental result on small benchmarks

Table 1: Semi-supervised classification on three different citation networks using biased training samples. Our
proposed framework (SR-GNN) outperforms all baselines on biased training input.

Method Cora | Citeseer PubMed
Micro-F11 | Macro-F11 | AF1 | | Micro-FI1 | Macro-FI1 | AF1 | | Micro-F11 | Macro-F11 | AF1 |

GCN (1ID) 80.8+16 | 80.1£1.3 0 703+19 | 668+13 | 0 |798+14 | 788+14 0

Feat.+MLP 497 £ 25 | 483 2.2 31.1 | 551 +£13 | 52.7+1.3 25.2 51328 | 41.8£6.2 28.5
Emb.+MLP 576 £30 | 56.2+30 232 | 385+12 | 38.6+1.1 318 | 604 +£21 | 56.6 2.0 194
DGI 71.7+42 | 69.2+3.7 9.1 626 +1.6 | 60.0+1.6 7.6 580+53 | 524 +83 21.8
GCN 676 35 | 664+30 132 627 +£18 | 604+16 7.6 606 38 | 56060 19.2
GAT 584457 | 585+£50 224 | 580+£35 | 55027 123 | 552 +£37 | 460+ 64 14.6
SGC 702 +30 | 68.0+38 106 | 654+08 | 625+0.8 4.9 618 +45 | 574+72 18.0
APPNP 713+41 | 69.2+34 9.5 634+18  61.2+1.6 6.9 634 +42 | 587+7.0 16.4
w.0. KMM 72.1 £44 | 69.8 +3.7 8.7 639+0.7  61.8+£0.6 6.4 694+ 34 | 67.6 4.0 10.4
w.0. CMD 72032 | 69.5+3.7 8.8 66.1 £09 | 63.4+0.9 4.2 664 +£40 | 640£55 134
SR-GNN (Ours) 735 +33 | 714+ 35 7.3 67.1 +£09  64.0+0.9 3.2 713 +£22 | 70.2+24 8.5

SR-GNN outperforms other GNN baselines by accurately eliminating at least (~40%) of the negative effect.



Experimental result on large benchmark

Table 2: Semi-supervised classification on ogb-arxiv varying label ratio.

label(%) 1 % 5 %
Method Accuracy | A ] | Accuracy | A
GCN (IID) 1 66.0£06 | O 69.14+ 0.6 0
Feat.+MLP 455+ 0.6 | 21.5 | 43.7+03 | 254
Emb.+MLP 51.1£ 1.3 | 149 | 569+ 0.8 | 13.2
DGI 448+ 30 | 21.2 | 49.7+33 | 194
GCN 1 593+12 | 6.7 | 653+06 | 3.8
GAT 586+10 | 74 | 63410 | 5.7
SGC 59.0+£07 | 7.0 | 642+13 | 49
APPNP 598+ 1.1 | 6.2 | 651+26 | 4.0
w.0. KMM 60.6+0.2 | 54 | 65.1+1.8 | 4.0
w.0. CMD 61.0+£03 | 5.0 | 65.842.0 | 3.3
SR-GNN (Ours) | 61.6+0.6 | 44 | 66.5+0.6 | 2.6

SR-GNN improve 2% absolute accuracy and eliminate ~30% of the negative effect by biased data.



Comparison with domain adversarial network
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* DANN [1] is a method that uses an adversarial domain classifier to
encourage similar feature distributions between different domains.

[1] Ganin, Yaroslav, et al. “Domain-adversarial training of neural networks.” JMIR, 2016.



Comparison with domain adversarial network

Table 6: Comparison of Domain-Adversarial Neural Network (DANN) and CMD regularizer used in SR-GNN
with biased training data.

Cora Citeseer PubMed
Method Micro-F11 | Macro-F11 | Micro-F11 | Macro-F11 | Micro-F11 | Macro-F17
GCN 68.3 67.2 62.4 60.2 59.2 53.8
DANN 69.8 68.5 63.8 61.0 64.8 61.8
CMD (Ours) 71.0 69.4 65.0 62.3 67.5 66.2
APPNP 71.3 69.2 63.9 61.6 64.8 60.4
DANN 71.6 69.5 64.3 61.8 67.8 65.4
CMD (Ours) 724 70.1 65.0 62.4 70.4 68.7

Under semi-supervised setting, the performance of DANN is more sensitive to the
domain loss. CMD regularizer performs better with more robust weight selection.
Not that CMD regularizer is one component of the proposed SR-GNN.



Apply Shift-Robust on other GNN instances

Table 3: Comparison of baseline and our SR(Shift-Robust) version (A (%) -relative loss with biased sample) .

Cora Citeseer PubMed
Method Micro-F11 | Macro-F11 | A(%) | Micro-F11 | Macro-F11 | A(%) | Micro-F11 | Macro-F11 | A(%)
GCN (IID) 80.8 80.1 0% 70.3 66.8 0% 79.8 78.8 0%
GCN 67.6 66.4 -12% 62.7 60.4 -8% 60.6 56.0 -19%
SR-GCN 69.6 68.2 -10% 64.7 62.0 -6% 67.0 65.2 -13%
DGI (IID) 80.6 79.3 0% 70.8 66.7 0% 77.6 77.0 0%
DGI 71.7 69.2 -9% 62.6 60.0 -8% 58.0 524 -20%
SR-DGI 74.3 72.6 -6% 65.8 62.6 -6% 62.0 57.8 -16%




Varying « in biased training set creation
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« is the termination probability in PPR. Larger « means more localized PPR-neighbors.



SR-GNN on deeper models
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Figure 2: Comparison of GCN vs. SR-GCN model performance with the the same parameters. Our shift-robust
algorithm boosts the performance (top) consistently by reducing the distribution shifts (bottom).

Larger shift presented in deeper models! SR-GNN consistently works.



SR-GNN on wider models
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Figure 3: Comparison of GAT vs. SR-GAT model performance under increasing attention heads. Our shift-
robust algorithm boosts the performance (upper) consistently by reducing the distribution shifts (lower).

Smaller distributional-shift in wider models.



Outline

* Pre-training / self-supervised learning
* How to understand GNN generalization during testing time ?

* Design robust GNNss for semi-supervised node classification
* Handling localized training data

* Handling more node-level distribution shifts
* Shift-Robust Node Classification via Graph Adversarial Clustering (Preprint)

* Distribution shifts on graph-level tasks


https://arxiv.org/abs/2203.15802

Literature on node-level shift as OOD

Data (Sec. 3) )| Greph Data
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(FLAG [2020]; GRAND [2020]; DropEdge [2020];
| GAUG [2020]; MH-Aug [2021]; GraphCL [2020a.

Disentanglement-based)

[ DisenGCN [2019]; IPGDN [2020]; FactorGCN [2020b];
| NED-VAE [2020]; GraphVAE [2018]; VGAE [2016]; DGCL [2021a].

| Graph Models
Model (Sec. 4)

Graph OOD G i )
generalization gﬁ;’;ﬁmﬁ;ﬁzd
methods )

(DGNN [2022]; OOD-GNN [2021b]; StableGNN [2021]; DSE [2022d];
| DTP [2021]; Gem [2021]; CFLP [2021]; [Bevilacqua et al., 2021].

(Graph Invariant
| Learning

—( SR-GNN [2021]; [Zhang et al., 2021]; EERM [2022a]; DIR [2022c]. )

Learning (Graph Adversarial

Strategy (Sec. 5))\ | Training
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DAGNN [2019]; GraphAT [2019]; CAP [2021];
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[ [Hu et al., 2020b]; [Yehudai et al., 2021]; GraphCL [2020al;
LGCC [2020]; DR-GST [2022]; etc. [Liu er al., 2021].

Figure 1: Taxonomy of graph OOD generalization methods.

picture credit (https://arxiv.org/pdf/2202.07987.pdf)



Handling more node-level shift

. close-set
* Close-set shift __shift
e Covariate shift Training s
Pt (Y|Z) = Pro (Y| 2) - (Souree
e Conditional shift Y
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. Gtarget
* Open-set shift
* Reject unknown classes — Y
open-set

shift
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A unified domain adaptation framework

* Distribution shifts are mitigated i1f we can sample from true target data
distribution.
D
= *|hS S tipt

~
~— _—
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rS
Le

Lojw
* Can graph homophily help we estimate the target data distribution ?

Definition 3.2 (graph homophily ratio [38]). The graph homophily

ratio 1y, = {(u’v):(u’z") g |8 AYu=Yo} s the fraction of edges in a graph

which connect nodes with the same class label.



Graph clustering on target graph

* Same label nodes are densely connected. Ideal graph clustering breaks

the heterophily edges and keep the homophily edges.

* We match the identity of class and cluster by Variational Co-training.
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Improvements on open-set shift

Table 5: Open-set classification on three different citation networks. Numbers reported are all percentage (%).

Method Cora Citeseer PubMed
Micro-F1T | Macro-F1T | AF1] | Micro-F1T | Macro-F1T | AF1] | Micro-F1T | Macro-F1T | AF1]
DGI-IID 83.4+ 3.0 81.1 +1.7 0 753 £ 23 68.9 + 4.9 0 80.2 £ 0.6 80.2 £ 0.5 0
DGI-THS 702 £ 4.2 | 689 +4.0 13.2 629 +£5.1 | 56.4+10.7 | 124 | 63.8+7.4 58.0 £3.1 16.4
DGI-DOC 712 +£3.6 | 70.7 £3.0 12.2 56.6 + 8.1 57.0 £ 8.5 18.7 58.0 £ 4.6 574+ 23 22.2
GCN-IID 82.0+3.0 | 797 +1.6 0 75.0 £ 24 68.0 + 4.4 0 793 +0.3 78.8 £ 0.3 0
GCN-THS 724 £ 3.7 | 71.7 £3.7 9.6 66.7 + 3.4 61.5+ 7.0 8.3 64.2+ 2.8 58.9 £ 6.2 15.1
GCN-DOC 728 £3.4 | 728 £3.0 9.2 66.0 £ 5.0 63.8 + 7.1 9.0 585+70 | 475 2.0 20.8
GCN-PGL 721 +44 | 709 +£48 9.9 67.0 £ 5.2 60.0 + 9.4 8.0 63.6 + 3.8 57.8 £7.0 15.7
OpenWGL 66.7 £ 6.1 643 +£5.7 15.3 64.5 + 3.8 56.1+ 7.0 11.5 64.2+29 | 64.1+25 15.1
SRNCwo® 71.7+64 | 70.2+3.6 10.3 65.5 £ 4.7 56.2 + 4.5 9.5 658 £ 1.6 60.5+7.4 13.5
SRNCEp.1  760+47 | 752+29 | 60 | 692+58 | 60.4+60 | 1.9 | 67.3+5.1 | 68.0+3.9 | 12.0
SRNC 774 +4.0 | 75.9 £ 3.6 4.6 70.7 +4.0 | 634+ 74 4.3 69.1+44 | 694 +25 | 10.2

Open-set distribution shift are challenging and most baselines cannot outperform simple threshold.



Improvements on close-set shift

Density Plot with Multiple Graphs Table 4: Performance under close-set shift on ogb-arxiv.

Density

010
n Graph -
2 (4] arxiv
— [raining Methed | 2014-2016 | 25:2—2018 | 2018-2020
. ﬂ — Val
— Test1 DGI 526+04 | 483+19 | 509+ 1.4
I DGI-DANN  489+15 | 444431 | 282+ 07
DGI-CMD 445+ 06 | 365+10 | 31.0+19
e ~— Test 3 DGI-SRGNN 505+ 1.8 | 497 +27 | 47.7 + 22
GCN 562+ 05 | 557 +08 | 53.8 +1.2
bos GCN-DANN  543+10 | 504432 | 462 %50
GCN-CMD 50706 | 487 +1.5 | 50.0 + 23
GCN-SRGNN 544 +06 | 533+1.1 | 550+1.1
GCN-UDA 573+ 04 | 565+05 | 57.5+ 1.6
0027 GCN-EERM 504+ 1.6 | 504%27 | 51.0 +28
SRNCw.o® 573402 | 580408 | 556+ 1.7
oo SRNC Ep.1 569+ 0.1 | 56.0+04 | 54.5+0.1
SRNC 58.1+0.3 | 58.7+ 0.8 | 59.1+ 1.3

Node Lables

Close-set distribution shift exists in open benchmarks and existing methods can barely improve OOD.
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* Distribution shifts on graph-level tasks
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Distribution shifts on graph-level tasks
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picture credit (https://arxiv.org/pdf/2112.03806.pdf)
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Distribution shifts on graph-level tasks
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Theorem: A d-layer GNN has constant outputs for same d-ego graph.

Excessive depth is bad:
if task is solvable by d-layer GNN, there exists d+3 layer GNN fits training
distribution but fails on testing distribution.

picture credit (https://arxiv.org/pdf/2112.03806.pdf)
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