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Graphs are ubiquitous

picture credit (https://ai.googleblog.com/2022/03/robust-graph-neural-networks.html)

web graph social networks molecules



Machine leaning on graphs

Main ML tasks in graphs
§ Node classification

§ Rumor and fake news detection

§ Link Prediction
§ Friend recommendation

§ Graph property prediction
§ Molecular property
§ Molecular dynamics



Challenges of distribution shifts

picture credit (https://arxiv.org/pdf/2112.03806.pdf)



This Talk

• Pre-training / self-supervised learning
• How to improve GNN generalization during testing time ?

• Design robust GNNs for semi-supervised node classification
• Handling localized training data
• Handling more node-level distribution shifts

• Distribution shifts on graph-level tasks
• Topics not covered
• Robustness towards adversarial attacks
• Representation power of GNNs (e.g. expressiveness, invariance,

equivariance)



Outline

• Pre-training / self-supervised learning
• How to improve GNN generalization during testing time ?

• Design robust GNNs for semi-supervised node classification
• Handling localized training data
• Handling more node-level distribution shifts

• Distribution shifts on graph-level tasks



Main paradigm for pre-training in GNN
• Joint SSL training

• Two-stage training



Examples of pretext tasks



Predictive and contrastive pre-training



Different pre-training settings



GNN Pre-training vs. distribution shifts

Strategies for pre-training graph neural networks. ICLR 19’

Pre-Training Graph Neural Networks for Generic Structural Feature Extraction

Neither guarantee nor indicator of
positive or negative transfer !



Outline

• Pre-training / self-supervised learning
• How to improve GNN generalization during testing time ?

• Transfer learning of  graph neural networks with ego-graph information maximization
(Neurips 21’)

• Design robust GNNs for semi-supervised node classification
• Handling localized training data
• Handling more node-level distribution shifts

• Distribution shifts on graph-level tasks

https://proceedings.neurips.cc/paper/2021/hash/0dd6049f5fa537d41753be6d37859430-Abstract.html


A transfer learning perspective on GNNs

Source Graph Graph Neural
Networks

Target Graph

unsupervised
transferring



Graph Similarity as an indicator

• WL-test use rooted subtree to distinguish different graphs.

Can we use rooted subtree (ego-
graph) to measure the similarity

between graphs？



Ego-graph distribution difference as indicator

A natural view of graph neural network is a function F over graph(ego-graph) and node features.
Hence, transferability is measured upon domain (feature) discrepancy.



Definition of structural information



Design of transferable learning objective

Ø Motivation: if self-supervised model approximates the ego-graph
distribution of the source graph. The inference error on target graph 𝜀!
therefore, captures the structural difference if 𝜀" is small.

Ø We further use empirical loss different Δ𝑙 between source and target
graph to evaluate the potential of such transfer.



Ego-graph Information Maximization (EGI)

• To capture the joint distribution of structural information and node
features, an idea GNN maximize the mutual information between
structural information {𝑔# , 𝑥#} and its output Ψ. Such that,

• Discriminator 𝐷 is asked to distinguish the samples from joint
distribution and product of two marginal distributions.



EGI Model Optimization
Postive Ego-graph (𝒈𝒊, 𝒙𝒊)

Negative Ego-graph (𝒈𝒊′, 𝒙𝒊′)
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Reconstruct the ego-graph, alternatively



Transferability of EGI

• The above theorem states the empirical risk difference on source and target
graph are bounded by the Laplacian difference on in-degree and out-degree
adjacency matrices.
• Specifically, the EGI bound term Δ!(𝐺", 𝐺#) describes the transferability of
the EGI objective.



Application of EGI

• Usage of EGI
• Have a series of similar large graph on different task, train EGI embedding on
any of the graph and get transferable embedding easily.

• Usage of EGI gap term Δ$ 𝐺% , 𝐺&
• point-wise pre-judge: compute the term between source and target graph to

assess the potential of positive transfer ( < 1.0 in practice)
• pair-wise pre-selection: when multiple source graphs are available 𝐺*+, 𝐺*,, 𝐺*-

select most suitable source graph 𝐺*∗ with the smallest EGI gap Δ/



Experiments

• Synthetic Experiment
• Limit the power of rooted subtree by number of hop and still try to find
structural equivalent nodes

• Unsupervised Transfer on node classification
• Train self-supervised encoder on source graph. Obtain node embeddings on
target graph without fine-tuning.

• Few-shot fine-tuning on relation classification
• Jointly train the encoder and task-specific loss



Synthetic experiments

Synthetic task: finding structural equivalent nodes



Real Data Experiments

Task: Unsupervised transferring on role identification
Dataset: Airport (USA, Europe, Brazil), role – level of popularity

Common self-supervised algorithms such as DGI and GVAE fails to positive transfer.



Real Data Experiments

Task: Unsupervised transferring + fine-tuning on Link Prediction
Dataset: knowledge graph (YAGO)
Post-fine-tuning: use transferred encoderΨ
Joint-fine-tuning: jointly optimize the EGI and task objective on target



Model Analysis

• Efficient Computation of term Δ$
• Enumerating every single pair of ego-graph between source and target graph can
easily blow up the memory (N by M pairs – N,M is the number of nodes).
• In practice, we can estimate it by uniformly down sample such pairs

• Relation to the depth of rooted subtree (ego-graph)



Outline

• Pre-training / self-supervised learning
• How to understand GNN generalization during testing time ?

• Design robust GNNs for semi-supervised node classification
• Handling localized training data

• Shift-robust gnns: overcoming the limitations of  localized graph training data (Neurips 21’)
• Handling more node-level distribution shifts

• Distribution shifts on graph-level tasks

https://proceedings.neurips.cc/paper/2021/hash/eb55e369affa90f77dd7dc9e2cd33b16-Abstract.html


What is localized training data?

picture credit (https://ai.googleblog.com/2022/03/robust-graph-neural-networks.html)



Localized data is covariate shift
• A general graph neural network layer, final representation Z = Hk

• To learn a semi-supervised classifier, cross-entropy loss function l is
widely used

• Data-shift [1] happens when the training data is biased from testing
• Prtrain (X, Y) ≠ Prtest (X, Y)
• In a neural network, we care about the shift happens in the last hidden activated
layer Z, i.e. Prtrain (Z, Y) ≠ Prtest (Z, Y)
• Covariate shift assumes, Prtrain (Y|Z) = Prtest (Y|Z), such that,

[1] Quiñonero-Candela, Joaquin, et al., eds. Dataset shift in machine learning. Mit Press, 2009.



Quantify the distribution shift

• Assume two sets of representation vectors are generated by probability
distribution p and q, a valid discrepancy metric measures the distribution
shifts, CMD [1] for example,

[1] Zellinger, Werner, et al. "Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning." ICLR, 2016.



Negative effect of distribution shifts

Distribution shift (CMD) between training and testing data could be a good indicator of
performance (F1) !



Two major variants of GNNs

Standard GNNs: the graph inductive bias ,𝐴 is differentiable
Linearized GNNs: the graph inductive bias ,𝐴 is not differentiable
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Examples of linearized (shallow) models

[1] Wu, Felix, et al. "Simplifying graph convolutional networks." ICML, 2019.
[2] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann. "Predict then Propagate: Graph Neural Networks meet 
Personalized PageRank." ICLR, 2018.
[3] Bojchevski, Aleksandar, et al. “Scaling graph neural networks with approximate pagerank.” KDD, 2020.

SGC [1] APPNP [2], PPRGo [3]

Complexity of neural networks do not grow as number of propagations increase !



Standard GNN – regularization on Z

• Φ is fully differentiable. We sample an IID data of the same size of
training data and minimize the distribution shift between Ztrain and ZIID

Φ = 𝐹(Θ, 𝐴)



Linearized GNN – instance re-weighting

• We use importance sampling to mitigate the shift, calculate the instance
weight via kernel mean matching [1],

Φ = 𝐹'(Θ, 𝐹( 𝐴 )

[1] Gretton, Arthur, et al. "Covariate shift by kernel mean matching." Dataset shift in machine learning 3.4 (2009): 5



Shift-Robust training framework

• We choose APPNP [1] (a linearized model) as a concrete example that
both techniques can be applied

[1] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann. "Predict then Propagate: Graph Neural Networks 
meet Personalized PageRank." ICLR, 2018.



Shift-Robust training framework
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Biased training set creation

• The localized training data in real-world applications is not easy to
control the degree of bias. We propose a scalable biased training data
generation process based on fast Personalized Page Rank computation
[1].

[1] Andersen, Reid, Fan Chung, and Kevin Lang. “Local graph partitioning using pagerank vectors.” FOCS, 2006.



Biased training data example



Experimental result on small benchmarks

SR-GNN outperforms other GNN baselines by accurately eliminating at least (~40%) of the negative effect.



Experimental result on large benchmark

SR-GNN improve 2% absolute accuracy and eliminate ~30% of the negative effect by biased data.



Comparison with domain adversarial network

• DANN [1] is a method that uses an adversarial domain classifier to 
encourage similar feature distributions between different domains.

[1] Ganin, Yaroslav, et al. “Domain-adversarial training of  neural networks.” JMLR, 2016.



Comparison with domain adversarial network

Under semi-supervised setting, the performance of  DANN is more sensitive to the 
domain loss. CMD regularizer performs better with more robust weight selection.
Not that CMD regularizer is one component of the proposed SR-GNN.



Apply Shift-Robust on other GNN instances



Varying α in biased training set creation

α is the termination probability in PPR. Larger α means more localized PPR-neighbors.



SR-GNN on deeper models

Larger shift presented in deeper models! SR-GNN consistently works.



SR-GNN on wider models

Smaller distributional-shift in wider models.



Outline

• Pre-training / self-supervised learning
• How to understand GNN generalization during testing time ?

• Design robust GNNs for semi-supervised node classification
• Handling localized training data
• Handling more node-level distribution shifts

• Shift-Robust Node Classification via Graph Adversarial Clustering (Preprint)

• Distribution shifts on graph-level tasks

https://arxiv.org/abs/2203.15802


Literature on node-level shift as OOD

picture credit (https://arxiv.org/pdf/2202.07987.pdf)



Handling more node-level shift

• Close-set shift
• Covariate shift
Prtrain (Y|Z) = Prtest (Y|Z)

• Conditional shift
Prtrain (Y|Z) ≠ Prtest (Y|Z)

• Open-set shift
• Reject unknown classes

Training
(Source) 

Testing
(Target) 

Y

Y

close-set
shift

open-set
shift

Gsource

Gtarget



A unified domain adaptation framework

• Distribution shifts are mitigated if we can sample from true target data
distribution.

• Can graph homophily help we estimate the target data distribution ?



Graph clustering on target graph

• Same label nodes are densely connected. Ideal graph clustering breaks
the heterophily edges and keep the homophily edges.
• We match the identity of class and cluster by Variational Co-training.



Improvements on open-set shift

Open-set distribution shift are challenging and most baselines cannot outperform simple threshold.



Improvements on close-set shift

Close-set distribution shift exists in open benchmarks and existing methods can barely improve OOD.



Outline
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Distribution shifts on graph-level tasks

picture credit (https://arxiv.org/pdf/2112.03806.pdf)

Size Generalization

Ego-graph as tokens (same as EGI)



Distribution shifts on graph-level tasks

picture credit (https://arxiv.org/pdf/2112.03806.pdf)

varied size and #degree varied size and fixed #degree fixed test generalization

Theorem: A d-layer GNN has constant outputs for same d-ego graph.
Excessive depth is bad:

if task is solvable by d-layer GNN, there exists d+3 layer GNN fits training
distribution but fails on testing distribution.
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