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Multi-type Entity Alignment

• Entity Alignment/Matching identifies entities from different data sources 
(i.e. 2) that refer to the same real-world entity. 

• Traditional industry system on single entity type
• Blocking (candidate generation)
• Feature Generation
• Matching

• What & Why multi-type Alignment?
• Purpose

• end-to-end model for actor/film/character Alignment
• Each entity could be multi-typed:

• According to IMDB:
• Tom Hanks is a actor/producer/writer and person

• Decisions made on different types can affect each other
• Movie acted by Tom Hanks will gain confidence if Tom Hanks are likely matched in Graph A

and B

Film:Forrest Gump

Actor:Tom Hanks

Character:Forrest Gump
Character:Jenny Curran
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Example: IMDB graph



Data Representation
Relational Table Representation

Id Name PerformAs ActIn Age Height

id/851nu Tom Hanks Forrect Gu… Forrect Gu… 1956-07-09 1.83

Pros: Convenient, stand-alone data for every entities

Film:Forrest Gump

Actor:Tom Hanks

Character:Forrest Gump
Character:Jenny Curran

Graph Representation

Cons: limited representation power, expensive join 
computation for higher order information

Relation predicate:
The object of the triple is also an entity

<Person, act_in, Film>
Attribute predicate:

The object of the triple is value
<Person, has_name, Chris>
<Person, age, 19>

Name Birth date Death Date Height Place of Birth
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Graph Neural Networks

• Leverage the representation power of neural networks in Graph
• A suitable model to aggregate high order neighborhood information
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Graph Convolutional Networks 
(Kipf, Thomas et al., 2016)

GraphSAGE (Hamilton et al., 2017)

GAT (Veličković, Petar, et al., 2017)
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Attribute encoding in multi-relational graph

• Different from previous application of GNN on knowledge graph
embedding or knowledge graph alignment, which are attribute-light

• Attribute is important clue for the Entity Alignment in production
• Each entity can be subject or object for multiple relations

• E.g. Film: Forrect Gump

• We use different matrices WR for different relations
• Wact_in X
• Whas_character X
• Wperform_by X

• Relational GNN

Film:Forrest Gump

Actor:Tom Hanks

Character:Forrest Gump
Character:Jenny Curran
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Relational GNN Layer

Input
feature

Character:
Jenny Curran

Character:
Forrest Gump Actor:Tom HanksFilm:

Forrest Gump

Neighbor Aggregation

hj1
0 hj2

0 hi
0 hj3

0

zj1 zj2 zi zj3 Relational
projection

Hidden
represention

Wcharacter_in Wcharacter_in Wact_inWself-loop

hi
1

8R-GCN (M Schlichtkrull et al., 2016)



Entity Alignment Prediction with GNN
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Scalability

• The entity graph is huge
• AMC(amazon music data), ~100 Million Records
• Freebase-IMDB, >1M entities

• Traditional GNNs do not support mini-batch training
• Sampler k-hop sub-graph and propagate the whole adjacency matrix
• Not a generic solution for our needs(one producer will have thousands of

songs, etc.

10Deep Graph Library (Wang, Minjie, et al., 2016)
GraphSAGE (Hamilton et al., 2017)



So, are we done?
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FreebaseIMDB

Aditya Raj
Aditya Raj Kapoor

डॉ��ॉप ड� ीिमंग

Sambar Salsa

Don't Stop Dreaming

Sambar Salsa

A Real Alignment Example

Shamaal: The Sandstorm

Gawaahi

Anant Balani

Ashutosh Anand Verma

Ashutosh Anand VermaMunir Ahmad

Munir Ahmad

Ashish Redij Ashish Redij

Vasanti Sundaram
Vasanti Sundaram
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Idea I: ”concatenate”

Layer 0:Input feature

Person:
Ashutosh Anand Verma

Person:
Munir Ahmad

Film:
डॉ��ॉप ड� ीिमंग

[zi
1 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 𝛼𝛼𝑖𝑖𝑗𝑗

1 𝑧𝑧𝑗𝑗1]

hj1
0 hj2

0 hi
0

zj1 zj2 zi Relational
projection

Layer 1:
Hidden represention

Wedit_by Wdirect_by Wself-loop

hi
1
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FreebaseIMDB

Aditya Raj
Aditya Raj Kapoor

डॉ��ॉप ड� ीिमंग

Sambar Salsa

Don't Stop Dreaming

Sambar Salsa

A Real Alignment Example

Shamaal: The Sandstorm

Gawaahi

Anant Balani

Ashutosh Anand Verma

Ashutosh Anand VermaMunir Ahmad

Munir Ahmad

Ashish Redij Ashish Redij

Vasanti Sundaram
Vasanti Sundaram

Match or Not?
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Idea II: “Cross-Attention”

Film:
Sambar Salsa

Film:
डॉ��ॉप ड� ीिमंग

Person:
Aditya Raj Kapoor

[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 𝛼𝛼𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj1
1 hj2

1 hi
1

zj0 zj2 zi

Wproduce Wproduce Wself-loop

hi
2

Film:
Don’t stop
dreaming

[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 𝛼𝛼𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj0
1 hj2

1 hi
1

zj0 zj2 zi

Wwrite Wself-loop

hi
2

Person:
Aditya Raj Kapoor

Wwrite

zj3zj1

Wwrite

zj1 zj3

hj1
1

Film:
Sambar 

Salsa

hj3
1

Film:
Shamaal: 

The Sandstorm

Wwrite Wwrite Wedit

Film:
Gawaahi

Layer 1

Layer 2
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[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 β 𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj0
1 hj2

1 hi
1

zj0 zj2 zi

Wwrite Wself-loop

hi
2

Person:
Aditya Raj Kapoor
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hj1
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Film:
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Idea II: “Cross-Attention”

Film:
Sambar Salsa

Film:
डॉ��ॉप ड� ीिमंग

Person:
Aditya Raj Kapoor

[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 𝛼𝛼𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj1
1 hj2

1 hi
1

zj0 zj2 zi

Wproduce Wproduce Wself-loop

hA,i
2

Film:
Don’t stop
dreaming

[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 β 𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj0
1 hj2

1 hi
1

zj0 zj2 zi

Wwrite Wself-loop

hB,i
2

Person:
Aditya Raj Kapoor

Wwrite

zj3zj1

Wwrite

zj1 zj3

hj1
1

Film:
Sambar 

Salsa

hj3
1

Film:
Shamaal: 

The Sandstorm

Wwrite Wwrite Wedit

Film:
Gawaahi

𝛼𝛼𝑖𝑖𝑗𝑗2 =
∑𝑗𝑗′∈𝒩𝒩𝐵𝐵 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)

∑𝑗𝑗∈𝒩𝒩𝐴𝐴 𝑖𝑖 ∑𝑗𝑗′∈𝒩𝒩𝐵𝐵 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)

Layer 1

Layer 2
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[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 𝛼𝛼𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj1
1 hj2

1 hi
1

zj0 zj2 zi

Wproduce Wproduce Wself-loop

hA,i
2

[zi
2 ; ∑𝑗𝑗∈𝒩𝒩 𝑖𝑖 β 𝑖𝑖𝑗𝑗

2 𝑧𝑧𝑗𝑗2]

hj0
1 hj2

1 hi
1

zj0 zj2 zi

Wwrite Wself-loop

hB,i
2

Wwrite

zj3zj1

Wwrite

zj1 zj3

hj1
1 hj3

1

Wwrite Wwrite Wedit

𝛼𝛼𝑖𝑖𝑗𝑗2 =
∑𝑗𝑗′∈𝒩𝒩𝐵𝐵 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)

∑𝑗𝑗∈𝒩𝒩𝐴𝐴 𝑖𝑖 ∑𝑗𝑗′∈𝒩𝒩𝐵𝐵 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)
β𝑖𝑖𝑗𝑗
2 =

∑𝑗𝑗′∈𝒩𝒩𝐴𝐴 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)
∑𝑗𝑗∈𝒩𝒩𝐵𝐵 𝑖𝑖 ∑𝑗𝑗′∈𝒩𝒩𝐴𝐴 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)

Collective GNN Layer – cross attention

Layer 1

Layer 2

24



β𝑖𝑖𝑗𝑗
2 =

∑𝑗𝑗′∈𝒩𝒩𝐴𝐴 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)
∑𝑗𝑗∈𝒩𝒩𝐵𝐵 𝑖𝑖 ∑𝑗𝑗′∈𝒩𝒩𝐴𝐴 𝑖𝑖 exp(𝑧𝑧𝑗𝑗𝑧𝑧𝑗𝑗′)

Collective GNN Layer – self attention
Negative Evidence: self-attention
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Related Work

• Embedding-based knowledge 
graph alignment

• Transductive models that based on 
various knowledge graph 
embedding methods such as 
TransE, DistMult, TransH etc.

• Large parameter space 𝑂𝑂 𝑉𝑉 when 
dealing with large scale knowledge 
graphs 

28

[ITransE Zhu, Hao, et al. IJCAI 17’]



Related Work

• Collective entity resolution
• Decisions made on inter-connected entities are affected by each other.
• PARIS [Suchanek, Fabian et al. VLDB 12’]

• Functionality = 1, indicates the right argument of the relation is unique, e.g. isCitizenOf
• Inverse functionality, indicates the left argument of the relation is unique
• Positive evidence:

• Negative evidence
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Related Work

• Graph Matching Networks [Li, Yujia, et al. ICML 19’]
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Related Work

• Entity Matching in relational database
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[Magellan Konda Pradap, et al. VLDB 16’] [DeepMatcher Mudgal, Sidharth, et al.SIGMOD 18’]
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Model Setting and Evaluation

• Recall@Precision=0.95, PRAUC, F1
• GNN model training: sample #negatives=20 for each positive pair
• Movie Vertical:

• Use name edit distance as blocking key to create testing dataset

• Music Vertical:
• Sub-sample 1M music graph and a corresponding Wikipedia music graph
• Training pairs are generated from existing system with high precision
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Data Schema
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Baselines

1. Entity feature + feed forward neural networks
2. GraphSage embedding + feed forward neural networks
3. Magellan
4. DeepMatcher
5. PARIS (collective)
6. GCN + Alignment Loss
7. GraphSage + Alignment Loss
8. GAT + Alignment Loss
9. RGCN + Alignment Loss
10. R-GraphSage + Alignment Loss
11. CG-MuAlign(proposed model)
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Entity Matching

GNN Variants



Designed Experiments

• Entity alignment on labeled types
• Performance v.s. number of supervisions
• Entity alignment on unlabeled type with limited supervision
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Entity alignment on labeled types
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Performance v.s. number of supervisions
Is the model sensitive to the amount of training data?
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Entity alignment on unlabeled type with
limited supervision
• Few-shot setting

• model trained on type A and fine-tuned on type B with 2000 samples
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What’s the trade-off between collective and 
scalability? 

40

We just need to have one collective layer to obtain the 
most collective power. 
Space Complexity: 𝑂𝑂 𝐵𝐵 ⋅ 𝑁𝑁2 , N is the number of 
sampler neighborhoods.
Time Complexity: 𝑂𝑂 𝑆𝑆 ⋅ 𝑁𝑁2 , S is the # training pairs



Parameter study & Running time
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Future Work

• Multi-class collective learning on network structured data
• Different node types can have different label space
• Measure the cross-type label correlations as explainable knowledge
• Relieve the label scarcity on multi-task setting
• Scenario 1: different tasks share overlapped label space
• Scenario 2: different tasks share disjoint label space

• Source code: https://github.com/GentleZhu/CG-MuAlign
• Paper: https://gentlezhu.github.io/files/CollectiveAlignment.pdf
• Slides: 
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https://github.com/GentleZhu/CG-MuAlign
https://gentlezhu.github.io/files/CollectiveAlignment.pdf


Discussion & QA
Thank you!
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