

Collective Graph Neural Nets for Multi-type Entity Alignment

Qi Zhu¹, Hao Wei², Bunyamin Sisman², Da Zheng², Christos Faloutsos³,

Xin Luna Dong², Jiawei Han¹

¹University of Illinois at Urbana-Champaign ²Amazon, Inc. ³Carnegie Mellon University

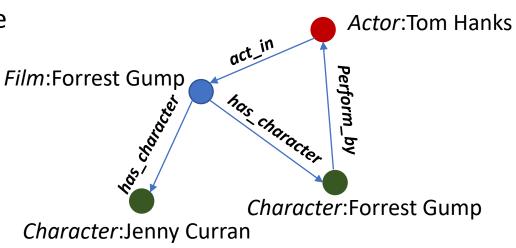
Overview

product graph

- Introduction
 - Multi-type Entity Alignment
 - Data Representation
 - Graph Neural Networks
- Challenges
- Related work
- Proposed Framework
- Experiments
- Future work

Multi-type Entity Alignment

- Entity Alignment/Matching identifies entities from different data sources (i.e. 2) that refer to the same real-world entity.
 - Traditional industry system on single entity type
 - Blocking (candidate generation)
 - Feature Generation
 - Matching
- What & Why *multi-type* Alignment?
 - Purpose
 - end-to-end model for actor/film/character Alignment
 - Each entity could be multi-typed:
 - According to IMDB:
 - Tom Hanks is a actor/producer/writer and person
 - Decisions made on different types can affect each other
 - Movie acted by Tom Hanks will gain confidence if Tom Hanks are likely matched in Graph A and B



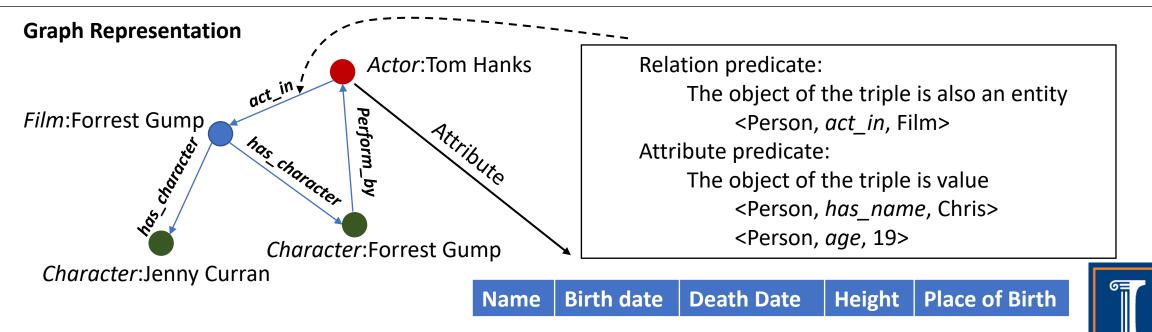
Example: IMDB graph

Data Representation

Relational Table Representation

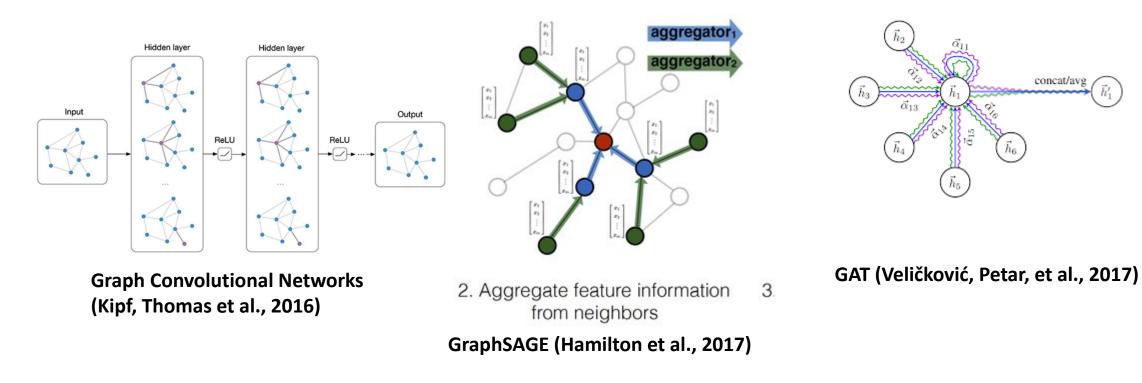
Id	Name	PerformAs	ActIn	Age	Height
id/851nu	Tom Hanks	Forrect Gu	Forrect Gu	1956-07-09	1.83

Pros: Convenient, stand-alone data for every entities Cons: limited representation power, expensive join computation for higher order information



Graph Neural Networks

- Leverage the representation power of neural networks in Graph
- A suitable model to aggregate high order neighborhood information



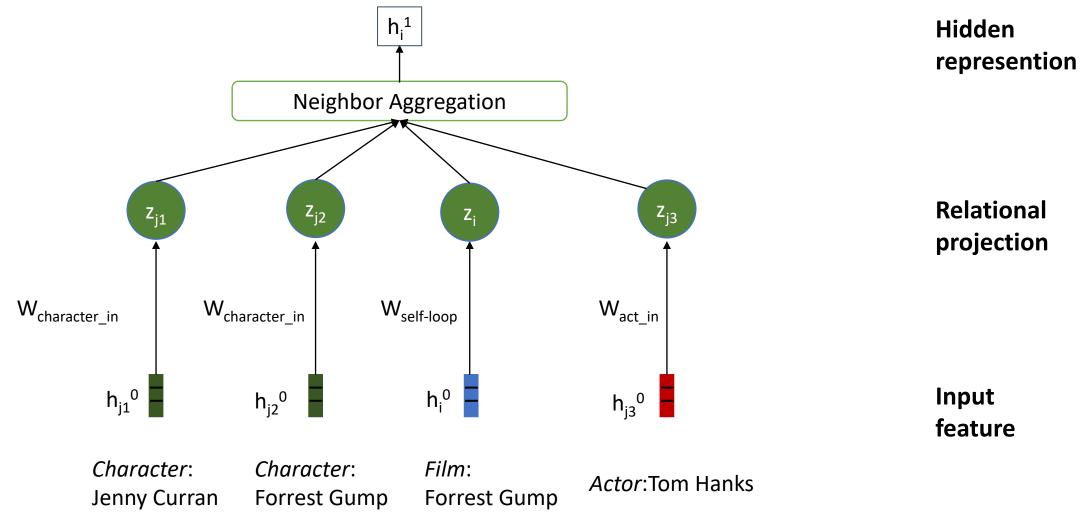
Overview

- Introduction
- Challenges
 - Attribute alignment for entities in different types
 - Aggregation function
 - Noisy neighborhood information
- Proposed Framework
- Experiments
- Related work
- Future work

Attribute encoding in multi-relational graph

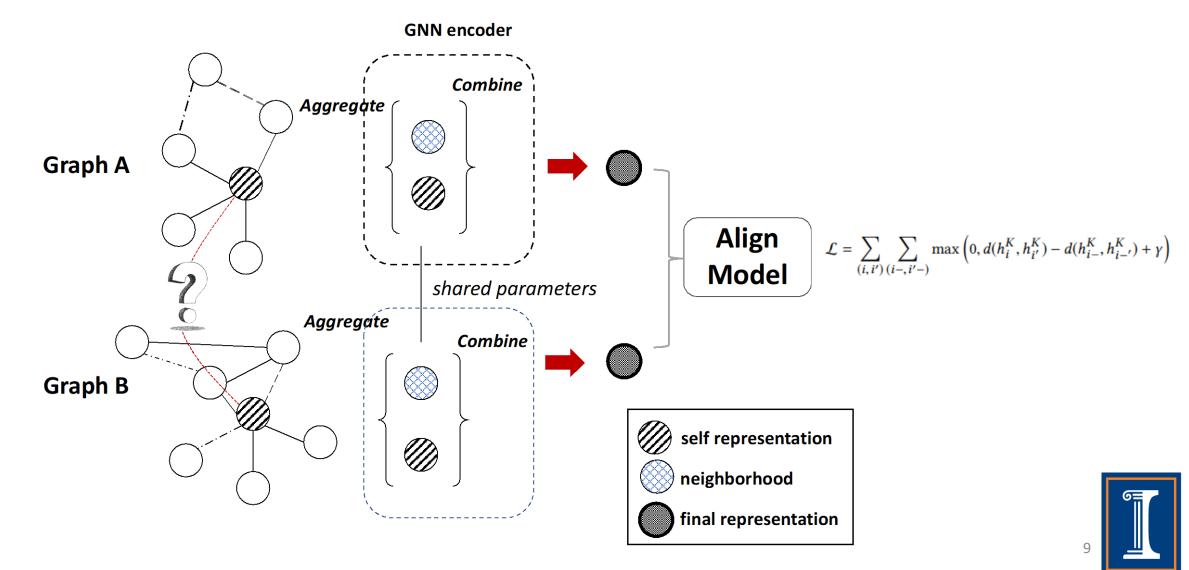
- Different from previous application of GNN on knowledge graph embedding or knowledge graph alignment, which are attribute-light
- Attribute is important clue for the Entity Alignment in production
- Each entity can be subject or object for multiple relations
 - E.g. Film: Forrect Gump

Relational GNN Layer



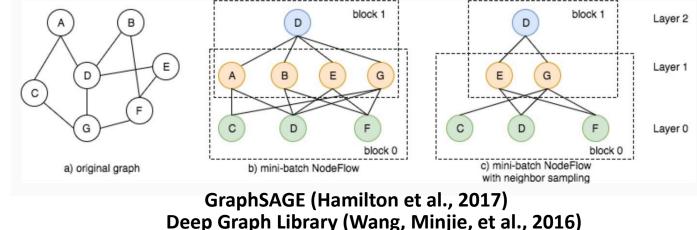
8

Entity Alignment Prediction with GNN



Scalability

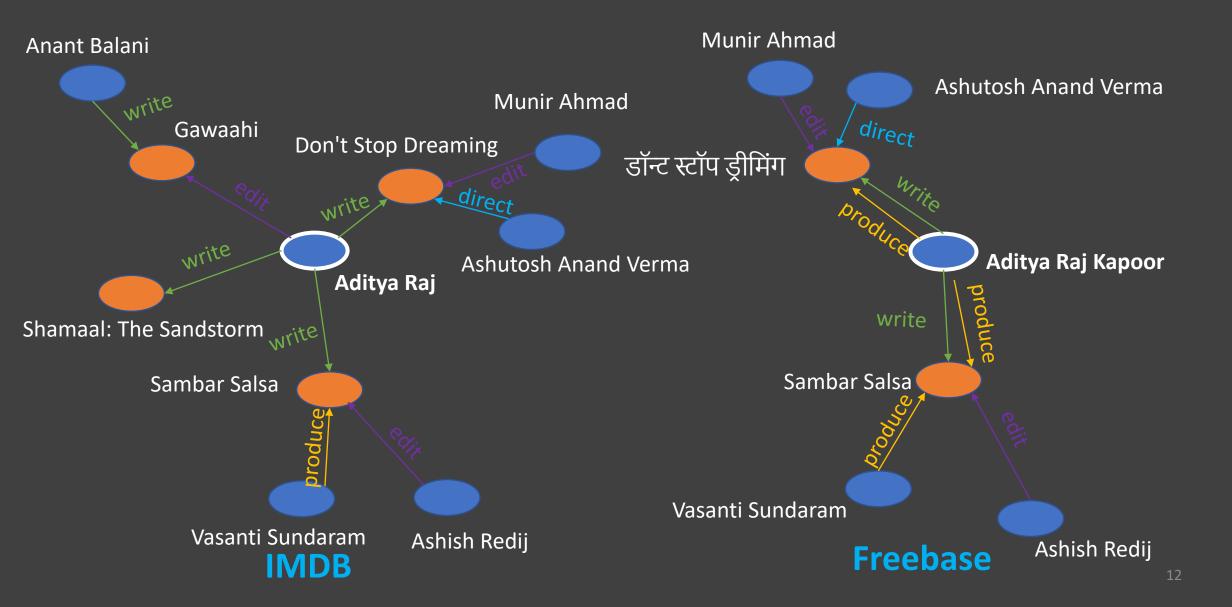
- The entity graph is huge
 - AMC(amazon music data), ~100 Million Records
 - Freebase-IMDB, >1M entities
- Traditional GNNs do not support mini-batch training
 - Sampler k-hop sub-graph and propagate the whole adjacency matrix
 - Not a generic solution for our needs(one producer will have thousands of songs, etc.



10

So, are we done?

A Real Alignment Example



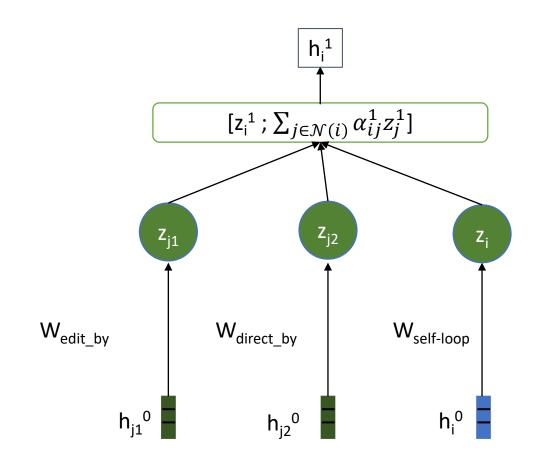
Overview

- Introduction
- Challenges
 - Attribute alignment for entities in different types
 - Aggregation function
 - Noisy neighborhood information
- Proposed Framework
- Related Work
- Experiments
- Next Steps

A Real Alignment Example



Idea I: "concatenate"

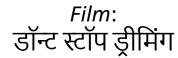


Layer 1: Hidden represention

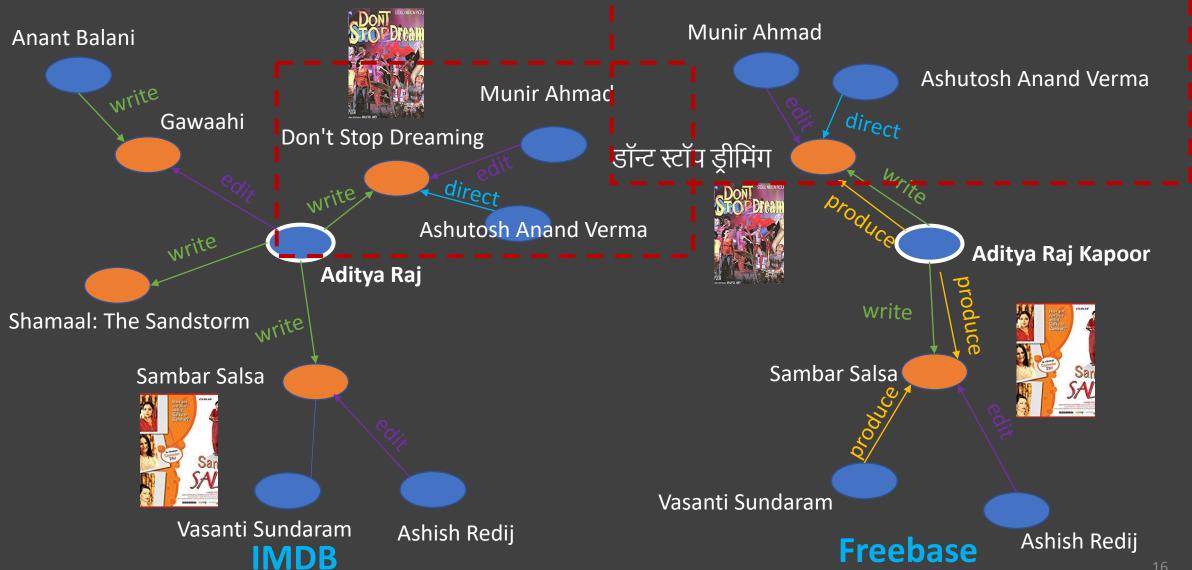
Relational projection

Layer 0:Input feature

Person:Person:Ashutosh Anand VermaMunir Ahmad



A Real Alignment Example

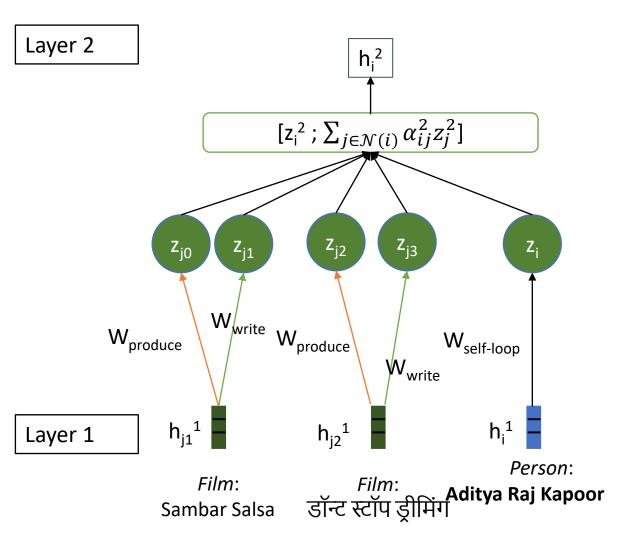


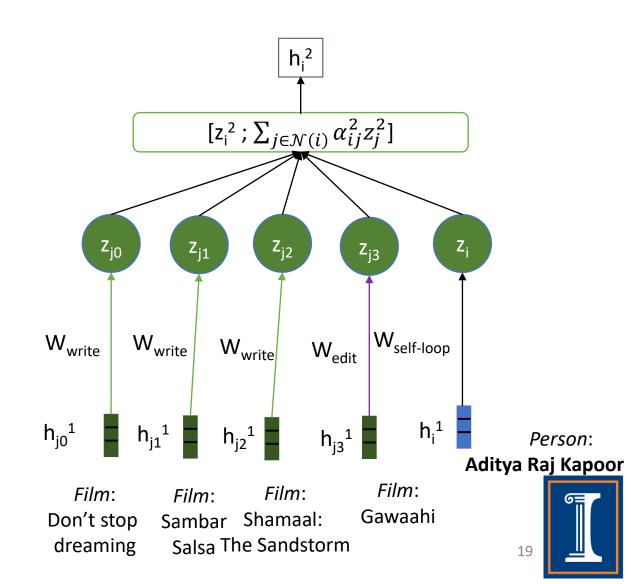
Overview

- Introduction
- Challenges
 - Attribute alignment for entities in different types
 - Aggregation function
 - Noisy neighborhood information
- Proposed Framework
- Related Work
- Experiments
- Next Steps

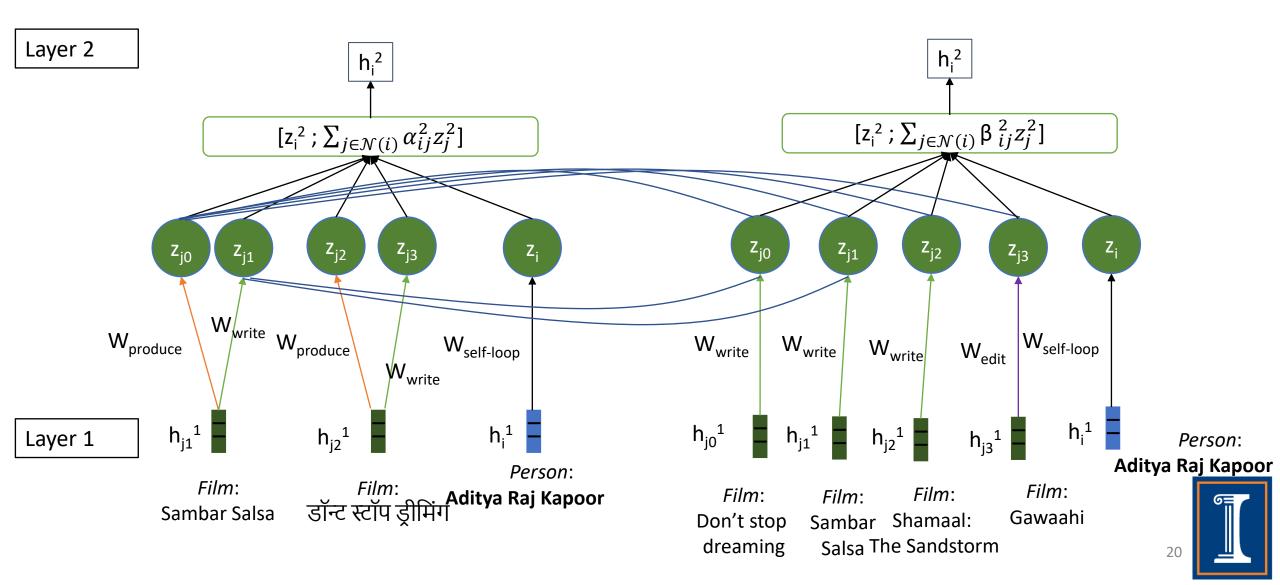
A Real Alignment Example

Idea II: "Cross-Attention"

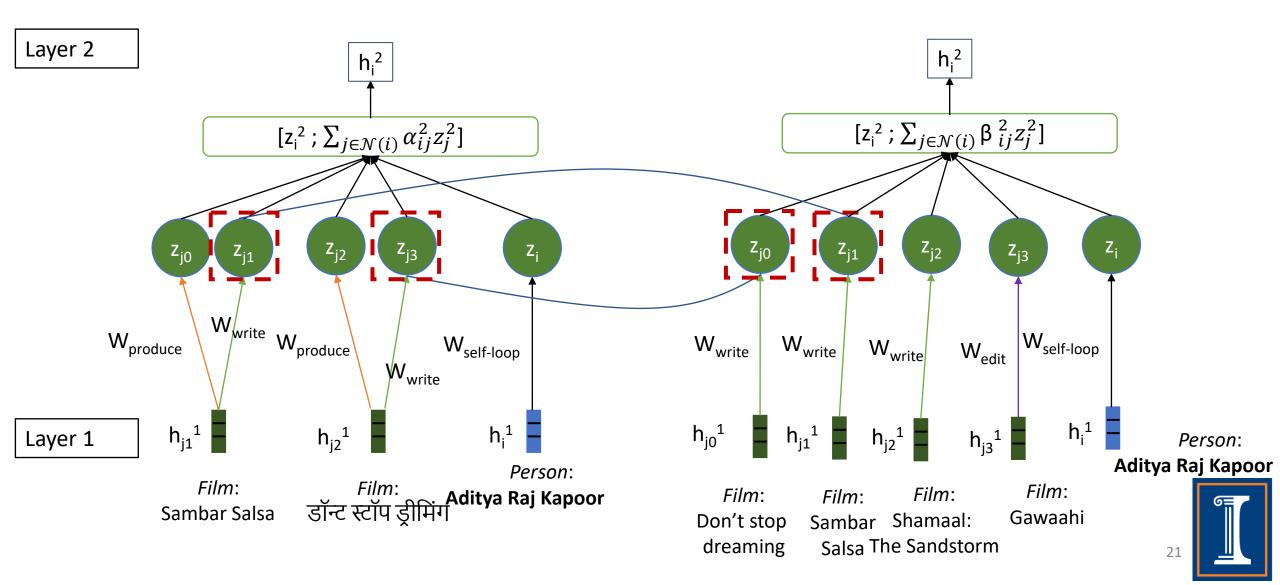


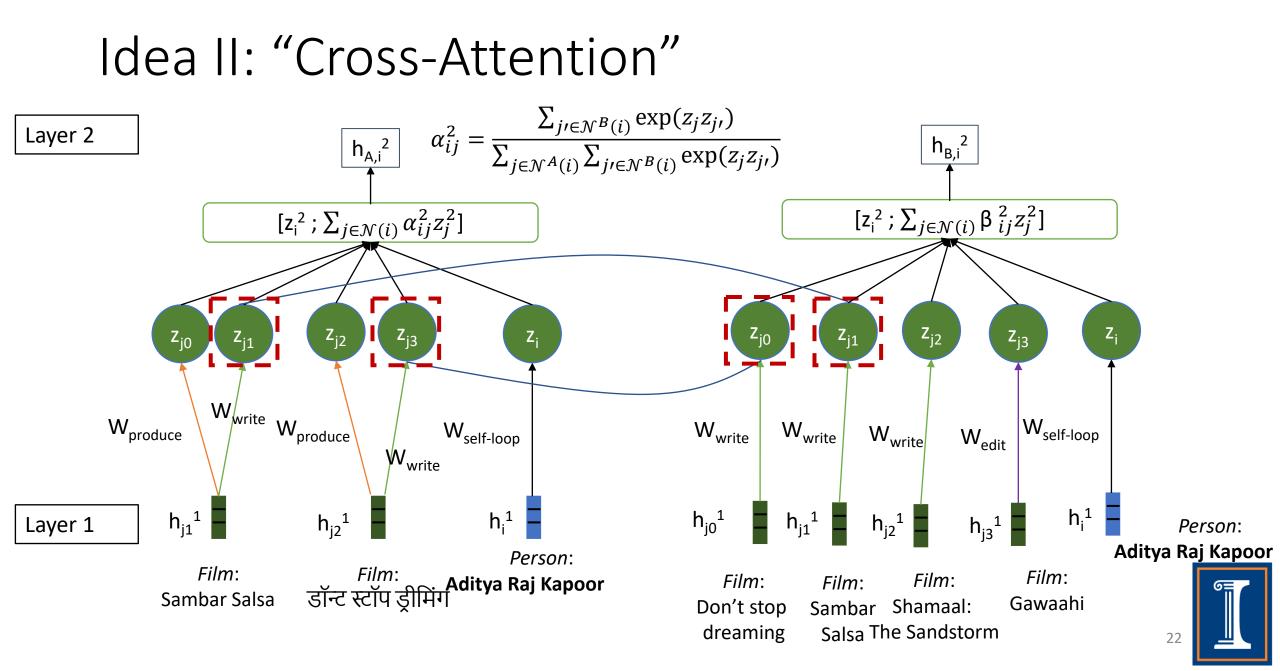


Idea II: "Cross-Attention"



Idea II: "Cross-Attention"

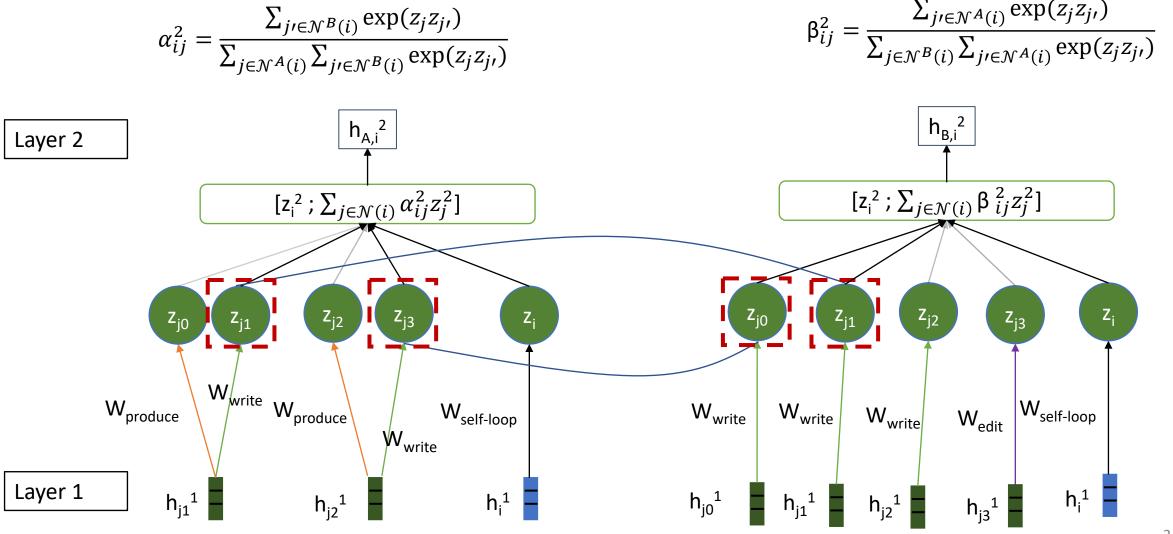




Overview

- Introduction
- Challenges
- Proposed Framework
- Related Work
- Experiments
- Next Steps

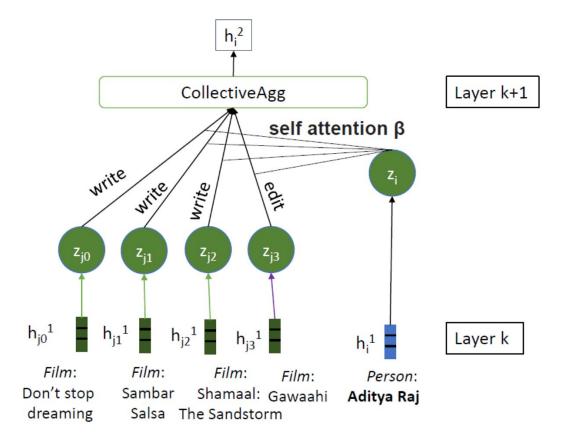
Collective GNN Layer – cross attention



24

Collective GNN Layer – self attention

$$\beta_{ij}^2 = \frac{\sum_{j' \in \mathcal{N}^A(i)} \exp(z_j z_{j'})}{\sum_{j \in \mathcal{N}^B(i)} \sum_{j' \in \mathcal{N}^A(i)} \exp(z_j z_{j'})}$$



Negative Evidence: self-attention

$$\beta_{ij} = \frac{\exp(\sigma(\vec{a}_r^T[z_i||z_j]))}{\sum\limits_{k \in \mathcal{N}_i} \exp(\sigma(\vec{a}_r^T[z_i||z_k]))}$$

Table 2: Alignment Example for song Radioactive. Neighbor nodes are grouped by relations as described in Section 3.2. Bold font indicates the neighbor node with large cross-attention weights.

	Amazon Music	Wikipedia	
Attributes			
Title Duration	Radioactive 2M19S	Radioactive 2M19S	
Neighbors			
Song writer	Wayne Sermon A. Grant Dan Reynolds Josh Mosser	Wayne Sermon Alexander Grant Dan Reynolds Josh Mosser	
Song producer	Alex Da Kid		
Album	Night Visions (Deluxe)	Night Visions	
Main performer	Imagine Dragons Kendrick Lamar	Imagine Dragons	

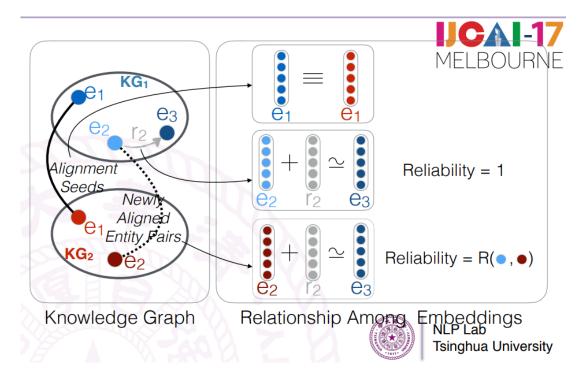
(b) Relation-aware Self-Attention

A Real Alignment Example

Overview

- Introduction
- Challenges
- Proposed Framework
- Related Work
- Experiments
- Next Steps

- Embedding-based knowledge graph alignment
 - Transductive models that based on various knowledge graph embedding methods such as TransE, DistMult, TransH etc.
 - Large parameter space O(V) when dealing with large scale knowledge graphs



[ITransE Zhu, Hao, et al. IJCAI 17']

28

- Collective entity resolution
 - Decisions made on inter-connected entities are affected by each other.
 - PARIS [Suchanek, Fabian et al. VLDB 12']

$$fun(r) = \frac{\#x: \exists y: r(x, y)}{\#x, y: r(x, y)}$$

- Functionality = 1, indicates the right argument of the relation is unique, e.g. *isCitizenOf*
- Inverse functionality, indicates the left argument of the relation is unique
- Positive evidence:

 $\implies x \equiv x'$

$$\exists r, y : r(x, y) \land (\forall y' : r(x', y') \Rightarrow y \neq y') \land fun(r) \text{ is high } \Pr_1(x \equiv x') := 1 - \prod_{\substack{r(x, y) \\ r(x', y')}} \left(1 - fun^{-1}(r) \times \Pr(y \equiv y')\right)$$

$$\Rightarrow x \neq x.$$

• Negative evidence

$$\exists r, y, y' : r(x, y) \land r(x', y') \land y \equiv y' \land fun^{-1}(r) \text{ is high } \Pr_2(x \equiv x') := \prod_{\substack{r(x, y) \\ r(x', y')}} \left(1 - fun(r) \prod_{\substack{r(x', y') \\ r(x', y')}} (1 - \Pr(y \equiv y'))\right)$$

• Graph Matching Networks [Li, Yujia, et al. ICML 19']

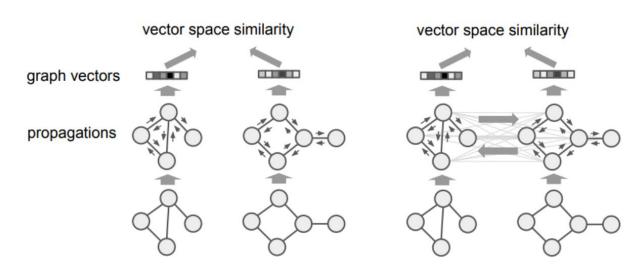
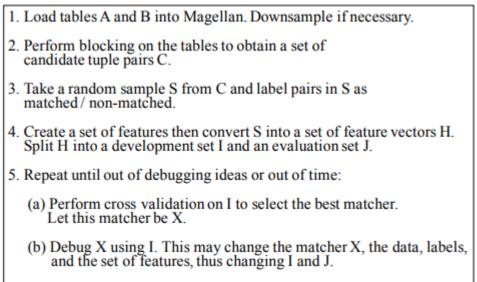


Figure 2. Illustration of the graph embedding (left) and matching models (right).

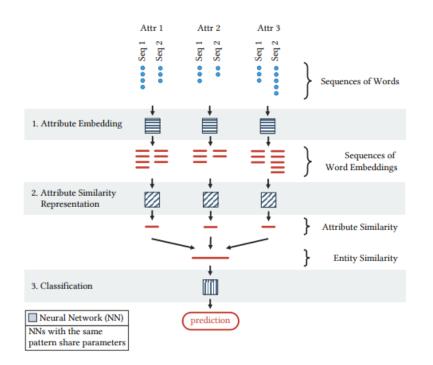
$$\begin{split} \mathbf{m}_{j \to i} &= f_{\text{message}}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{e}_{ij}), \forall (i, j) \in E_{1} \cup E_{2} \\ \boldsymbol{\mu}_{j \to i} &= f_{\text{match}}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}), \\ \forall i \in V_{1}, j \in V_{2}, \text{ or } i \in V_{2}, j \in V_{1} \\ \mathbf{h}_{i}^{(t+1)} &= f_{\text{node}}\left(\mathbf{h}_{i}^{(t)}, \sum_{j} \mathbf{m}_{j \to i}, \sum_{j'} \boldsymbol{\mu}_{j' \to i}\right) \\ \mathbf{h}_{G_{1}} &= f_{G}(\{\mathbf{h}_{i}^{(T)}\}_{i \in V_{1}}) \\ \mathbf{h}_{G_{2}} &= f_{G}(\{\mathbf{h}_{i}^{(T)}\}_{i \in V_{2}}) \\ s &= f_{s}(\mathbf{h}_{G_{1}}, \mathbf{h}_{G_{2}}). \end{split}$$

• Entity Matching in relational database



```
6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.
```

[Magellan Konda Pradap, et al. VLDB 16']



[DeepMatcher Mudgal, Sidharth, et al.SIGMOD 18']

31

Overview

- Introduction
- Challenges
- Proposed Framework
- Experiments
- Next Steps

Model Setting and Evaluation

- Recall@Precision=0.95, PRAUC, F1
- GNN model training: sample **#negatives=20** for each positive pair
- Movie Vertical:
 - Use name edit distance as blocking key to create testing dataset

Table 4: Movie Dataset

Dataset	# Films	# People	# Characters	# Genres	# Train/Test
Freebase	273,526	314,869	859,289	599	53,405/53,405
IMDB 423,118		600,909	211,895	28	55,405/55,405

- Music Vertical:
 - Sub-sample 1M music graph and a corresponding Wikipedia music graph
 - Training pairs are generated from existing system with high precision

Table	5:	Music	Dataset
-------	----	-------	---------

Dataset	# Songs	# Albums	# Artists	# Train/Test
Wikipedia	104,179	188,602	71,409	57,062/23,485
Amazon-Music	999,900	200,911	201,550	

Data Schema

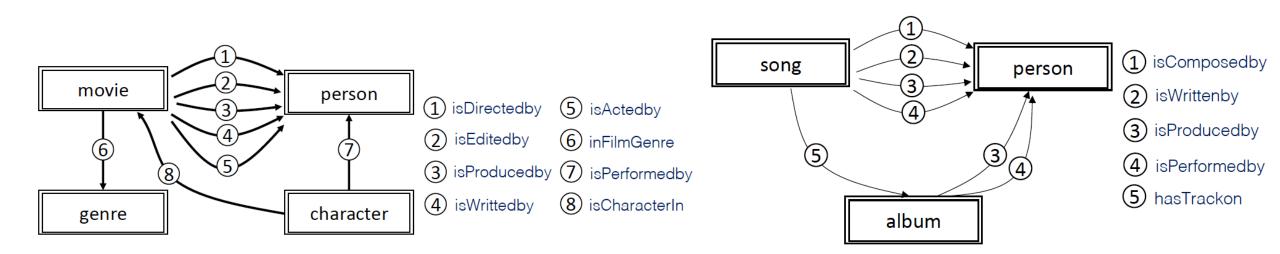


Figure 4: The schema of the Movie Graph

Figure 5: The schema of the Music Graph

34

Baselines

- 1. Entity feature + feed forward neural networks
- 2. GraphSage embedding + feed forward neural networks
- 3. Magellan
- 4. DeepMatcher
- Entity Matching
- 5. PARIS (collective)
- 6. GCN + Alignment Loss
- 7. GraphSage + Alignment Loss
- 8. GAT + Alignment Loss
- 9. RGCN + Alignment Loss
- 10. R-GraphSage + Alignment Loss
- 11. CG-MuAlign(proposed model)

GNN Variants

Designed Experiments

- Entity alignment on labeled types
- Performance v.s. number of supervisions
- Entity alignment on unlabeled type with limited supervision

Entity alignment on labeled types

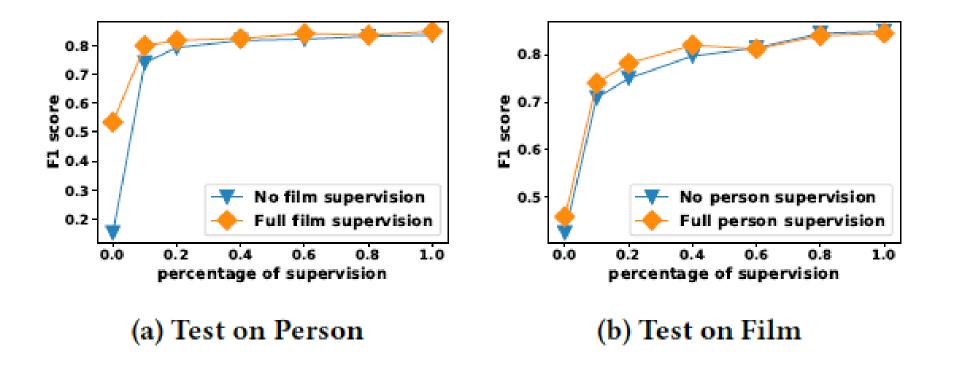
Table 6: Alignment Result on labeled types for inductive setting. For simplicity, transductive only methods are not included in this table. We report the standard deviation by 5-runs of each method except DeepMatcher, which takes long time for one run.

	Mathad	Movie Dataset				Music Dataset		
	Method	Rec@Prec=.95	PRAUC	F1	hit@1	Rec@Prec=.95	PRAUC	F1
	Feature+NN	0	0.3672 ± 0.053	0.6380 ± 0.000	0.7197 ± 0.001	0.0025 ± 0.002	0.7251 ± 0.027	0.6795 ± 0.009
	GraphSage+NN	0.0155 ± 0.001	0.3229 ± 0.003	0.3557 ± 0.001	0.4503 ± 0.003	0.0002 ± 0.000	0.2468 ± 0.018	0.3134 ± 0.012
	Magellan	0.4387 ± 0.000	0.7067 ± 0.000	0.6945 ± 0.000	0.7974 ± 0.000	0.1071 ± 0.000	0.7461 ± 0.000	0.6760 ± 0.000
	DeepMatcher	0	0.5829 ± 0.000	0.7549 ± 0.000	0.8468 ± 0.000	0	0.1748 ± 0.000	0.3559 ± 0.000
	PARIS	0.5840 ± 0.000	0.7759 ± 0.000	0.7661 ± 0.000	0.7725 ± 0.000	0.2333	0.4175 ± 0.000	0.4640 ± 0.000
ıts	GCN	0.0098 ± 0.001	0.2831 ± 0.006	0.3313 ± 0.004	0.4896 ± 0.003	0.0020 ± 0.002	0.3829 ± 0.009	0.4190 ± 0.003
iar	GraphSage	0.1900 ± 0.007	0.5589 ± 0.004	0.5251 ± 0.003	0.6605 ± 0.009	0.2868 ± 0.029	0.8252 ± 0.003	0.7637 ± 0.001
val	GAT	0.0147 ± 0.002	0.3448 ± 0.006	0.3793 ± 0.004	0.5483 ± 0.003	0.0004 ± 0.001	0.4485 ± 0.014	0.4819 ± 0.007
Z	RGCN	0.0106 ± 0.002	0.4247 ± 0.003	0.4435 ± 0.001	0.5450 ± 0.002	0.0025 ± 0.004	0.4419 ± 0.024	0.4625 ± 0.020
GNN	R-GraphSage	0.2829 ± 0.009	0.6573 ± 0.003	0.6110 ± 0.004	0.7125 ± 0.003	0.4081 ± 0.029	0.8335 ± 0.004	0.7646 ± 0.003
	CG-MuAlign	0.6010 ± 0.004	$\textbf{0.8548} \pm \textbf{0.004}$	0.8050 ± 0.006	$\textbf{0.8869} \pm \textbf{0.002}$	0.4437 ± 0.023	$\textbf{0.8400} \pm \textbf{0.008}$	$\textbf{0.7762} \pm \textbf{0.004}$

37

Performance v.s. number of supervisions

Is the model sensitive to the amount of training data?



Entity alignment on unlabeled type with limited supervision

- Few-shot setting
 - model trained on type A and fine-tuned on type B with 2000 samples

Table 7: Alignment Result on unlabeled types for few-shot setting. We mark the best and <u>second-best</u> result. Column person stands for unlabeled type in the evaluation.

Method		Pers	son	Film		
	Method	PRAUC	F1	PRAUC	F1	
	Node features	0.8285	0.8563	0.4231	0.4780	
ıts	GCN	0.3492	0.4659	0.2589	0.3223	
variants	GraphSage	0.5495	0.6069	0.4269	0.4158	
vaı	GAT	0.3518	0.3791	0.4926	0.4818	
GNN	RGCN	0.3130	0.3518	0.4288	0.4369	
5	R-GraphSage	0.8065	0.7582	0.5008	0.4705	
	Few-shot	0.8403	0.8033	0.8505	0.8136	
	Fully-supervised	0.8543	0.8214	0.9101	0.8794	

What's the trade-off between collective and scalability?

THEOREM 3.1. If G and G' have the same number of nodes, i.e. $|\mathcal{V}_1| = |\mathcal{V}_2|$ and there exists a injective function $\mathcal{F} : \mathcal{V}_1 \to \mathcal{V}_2$. Let K denote the order of the neighborhood, $|\mathcal{E}|$ is the total number of edges in the underlying graph G_u , the expected Collective Power decays geometrically as K increases.

$$\mathbb{E}_{(v,\mathcal{F}(v))\sim G_1} CP(K) \le |\mathcal{E}| \cdot p^{\frac{K}{2}} q^{\frac{K}{2}}$$

PROOF. According to the definition of p and q. Let p_i and q_i be the actual observed ratio for node v_i and $\mathcal{F}(v_i)$ in graph G and G', we have,

$$p = \frac{\sum_{i=1}^{|\mathcal{V}_1|} |\mathcal{N}_i| \cdot p_i}{|\mathcal{E}|}, q = \frac{\sum_{i=1}^{|\mathcal{V}_2|} |\mathcal{N}_i| \cdot q_i}{|\mathcal{E}|}$$

For a specific node *i*, the expected number of same neighborhood from a uniform distribution in two graphs is $|N_e|p_iq_i$. Thus, when K = 1,

$$\mathbb{E}_{(v,\mathcal{F}(v))\sim G_1}CP(1) = \sum_i |\mathcal{N}_e|p_i q_i \tag{6}$$

$$\leq \sqrt{\sum_{i} \left(\sqrt{N_e} p_i\right)^2 \sum_{i} \left(\sqrt{N_e} q_i\right)^2} \tag{7}$$

$$\leq \sqrt{\sum_{i} N_{e} p_{i} \sum_{i} N_{e} q_{i}} = |\mathcal{E}| \cdot \sqrt{pq}$$
(8)

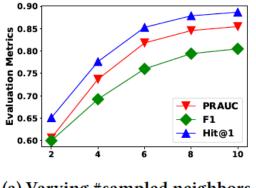
Recursively, we repeat the same calculation on shared neighbor nodes in previous step, that is, $\mathbb{E}[CP(K+1)] = \mathbb{E}[CP(K)] \cdot \sqrt{pq}$

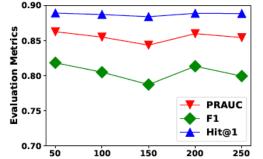
$$h_{i}^{k} = \begin{cases} \text{CollectiveAgg}\left(\{h_{j}^{k-1}, j \in \mathcal{N}_{i} \cup \{i\}\}\right), & k = K-1\\ \text{AverageAgg}\left(\{h_{j}^{k-1}, j \in \mathcal{N}_{i} \cup \{i\}\}\right) & k < K-1 \end{cases}$$
(9)

where the AVERAGEAGG replaces the $\alpha_{ij}\beta_{ij}$ in Equation 4 as $\frac{1}{|N_i|}$.

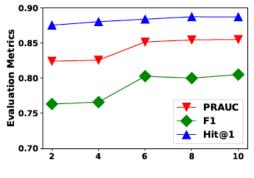
We just need to have **one** collective layer to obtain the most collective power. Space Complexity: $O(B \cdot N^2)$, N is the number of sampler neighborhoods. Time Complexity: $O(S \cdot N^2)$, S is the # training pairs

Parameter study & Running time

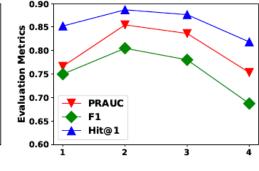




(a) Varying #sampled neighbors



(b) Varying #hidden dimensions

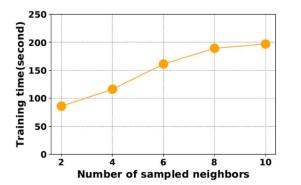


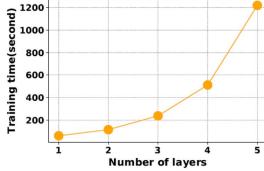
(c) Varying #negative samples

(d) Varying #layers

Table 9: Efficiency study of three different methods

Method	Training Time	# Parameters	Averaged-F1
Magellan	7m13s	9,300	0.6641
DeepMatcher	13h40m	17,757,810	0.6014
CG-MuAlign	30m47s	175,134	0.7925





(a) Varying #sampled neighbors

(b) Varying #layers

Future Work

- Multi-class collective learning on network structured data
 - Different node types can have different label space
 - Measure the cross-type label correlations as explainable knowledge
 - Relieve the label scarcity on multi-task setting
 - Scenario 1: different tasks share overlapped label space
 - Scenario 2: different tasks share disjoint label space
- Source code: <u>https://github.com/GentleZhu/CG-MuAlign</u>
- Paper: <u>https://gentlezhu.github.io/files/CollectiveAlignment.pdf</u>
- Slides:

Discussion & QA Thank you!

